Università di Roma

Realization and characterization of novel diamond detector prototypes for FLASH Therapy applications

<u>Gianluca Verona Rinati¹</u>, Giuseppe Felici², Federica Galante², Alessia Gasparini³, Lucia Giuliano⁴, Sophie Heinrich⁴, Matteo Pacitti², Giuseppe Prestopino¹, Verdi Vanreusel³, Dirk Verellen³, Claudio Verona¹, Marco Marinelli¹

- ¹ University of Rome Tor Vergata, Industrial Engineering Dept., Rome, Italy
- ² SIT S.p.A. , Aprilia, Latina, Italy
- ³ Iridium Kankernetwerk, Antwerp, Belgium and University of Antwerp, Antwerp, Belgium
- ⁴ Institut Curie, Inserm U 1021-CNRS UMR 3347, University Paris-Saclay, PSL Research University, Orsay, France.

e-mail: gianluca.verona.rinati@uniroma2.it

1-3 DECEMBER 2021

THERAPY

Confilct of interest disclosure

- Gianluca Verona Rinati, Marco Marinelli, Giuseppe Prestopino and Claudio Verona, signed a contract with PTW-Freiburg involving financial interests deriving from the PTW microDiamond 60019 dosimeter commercialization
- The prototypes reported in this presentation were developed in cooperation with PTW-Freiburg
- Giuseppe Felici is SIT S.p.A. shareholder.
- Matteo Pacitti and Federica Galante are employees at SIT S.p.A.

UH-DR and UH-DPP dosimetry

- Radiation beams utilized in FLASH-RT are characterized by high dose rates (>40Gy/s)
- In many cases they consist of pulsed beams leading to extremely high instantaneous dose rates

- Active dosimeters (real time reading) suffer of response nonlinearities and saturation effects in such extreme regimes
- Dosimetry of UH-DR/UH-DPP beams typically performed by passive dosimeters: Alanine, Fricke, Gafchromic films...

To produce novel detectors specifically designed for operation in UH-DPP conditions

microDiamond detector in UH-DPP beams

The unavoidable presence of a resistance along the circuit generates a drop voltage opposite to the built-in one (V = Ri)

Reduce the current (sensitivity) —

Reduce the resistance

M. Marinelli et al. Submitted to Medical Physics

 $\frac{EXAMPLE}{DPP = 1Gy}$ $t_p = 1\mu s$ Sensitivity = 1 nC/Gy i = 1 mA $V_{drop} = 1.5 V$ $R_s = 1.5 k\Omega$

Lower sensitive area diameter

Higher boron concentration

1 – 3 December 2021

Experimental setup

ElectronFlash linac (SIT S.p.A., Italy) beam characteristics:

- 7 MeV and 9 MeV electrons
- 1 µs to 4 µs pulses

Tor Vergat

- PRF: from single pulse up to 245 Hz
- **Circular applicators diameter:**

120 mm, 100 mm, 50 mm, 40 mm, 35 mm, 30 mm and 10 mm

DPP changed by:

- Using different PMMA applicators
- Placing the detectors at different SSDs

Optimized diamond detectors

Two optimized "flashDiamond" detectors fD-A and fD-B

• fD-A tested at SIT up to 10 Gy/pulse

Tor Vergat

• fD-B tested at the Curie Institute up to 26 Gy/pulse

PRF and pulse width dependence

Pulse duration dependence

Tor Verg

• Pulse length varied from 1 µs to 4 µs

PRF / Average dose rate dependence

- PRF varied from 5 Hz to 245 Hz at about 3.9
 Gy/pulse DPP.
- Average dose rate ranging from 20 to 960 Gy/s

Tor Vergata

PDDs

Measurements performed in motorized water phantom

"Conventional" beam modality

• Comparison among fDs, Markus IC and mD

"FLASH" beam modality

• Comparison between fD and EBT-XD

.... Tor Vergat

Profiles

Measurements performed in motorized water phantom

"Conventional" beam modality

Profiles at D_{max} for all the 7 applicators ٠

"FLASH" beam modality

Profiles at D_{max} for all the 7 applicators

1 – 3 December 2021

Detailed dosimetric and metrological characterization in progress in the framework **UHDpulse** project **FRAT** 2(0)21

Conclusion

- ✓ The response linearity of the diamond prototypes is affected by the size of their active volume as well as by their series resistance
- Linearity achieved up to at least: DPP = 20 Gy/pulse; IDR = 5 MGy/s, DR = 1 kGy/s
- The feasibility to produce diamond detectors for dosimetry of UH-DR/UH-DPP beams is demonstrated
- Comprehensive metrological and dosimetric investigation on the proposed device is currently underway in the framework of the UHDpulse European project

Acknowledgments

The present work is part of the 18HLT04 UHDpulse project (http://uhdpulse-empir.eu/) which has received funding from the European Metrology Programme for Innovation and Research (EMPIR) program, co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation program.

I wish to thank:

Tor Verga

- Rafael Kranzer, PTW-Freiburg
- Andreas Schüller, PTB

