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Air vented parallel plate ionization chambers in 
ultra high pulse dose rate
• Conventional parallel plate ionization chambers are 

compromised by high ion recombination losses up to 83 % for a 
2 mm electrode distance chamber at 5 Gy per pulse and 350 V 
bias voltage.

Advanced Markus (1 mm)

Petersson et al Med. Phys. 44, 1157-1167 (2017)

• Boag-like analytical ion recombination 
corrections factors do not reproduce the actual 
chamber response.

M. McManus et al Sci Rep 10, 9089 (2020)

Roos (2 mm)



Charge carrier transport equations
Ionization chamber can be described by the following set of one-dimensional 
equivalent equations, similar approach used by M. Gotz et al Phys. Med. Biol. 62 
8634 (2017) :
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Carrier Transport Parameters : Ion average 
mobility

We have taken ion mobility parametrization from B. Zhang et al
IEEE Trans. Dielectr. Electr. Insul., 26, 1403-1410 (2019).

Standard conditions (P = 1013.25 hPa, T = 20 ºC, H = 50 %)



Carrier Transport Parameters : Electron 
Velocity and Lifetime

The electron velocity was simulated using 
Magboltz (including humidity) S.F. Biagi Nucl. 
Instrum. Methods. Phys. Res. B, 421, 234-240 
(1999) .

The electron attachment was taken from Boissonat 
Chambres d’ionisation en Protonthérapie et 
Hadronthérapie, Physique Médicale. Université Caen 
Normandie, 2015

Standard conditions (P = 1013.25 hPa, T = 20 ºC)
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Simulation vs Measurements at PTB MELAF

A. Bourgouin et al Towards primary and 
secondary standards for dosimetry in Flash 
radiotherapy
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Results: Instantaneous Induced Current

Pulse repetition frequency: 5 Hz
Nominal beam energy: 20 MeV

Pulse duration: 2.5 µs
Dose per pulse: 5.74 Gy

Nominal bias voltage: +400 V

≈ Fast electron 
current 

Slow ion current

End of the beam

ICT current Ionization chamber induced current

≈ FEF
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Results: Instantaneous Induced Current

≈ Fast electron 
current 

Slow ion current

End of the beam

≈ FEF

Pulse repetition frequency: 5 Hz
Nominal beam energy: 20 MeV

Pulse duration: 2.5 µs
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Results: Charge Collection Efficiency

Unpublished data, do 
not copy or reproduce
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Conclusions

• Charge carrier transport numerical simulations show promising results to model the 
performance of ionization chambers in ultra-high dose rate. 

• This approach can still be improved. Transport parameters, such as electron 
attachment, need to be further studied for a more precise simulation.

• Instantaneous induced current due to charge carriers transport across the chamber is 
a more demanding way of benchmarking those models.

• We have created a beta version distributable simulation software. Contact 
Faustino.gomez@usc.es, jose.martin@usc.es .
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