

Plastic Scintillator under Ultra-High Dose Rate Electron Beam: Long Term Damages and Changes in Optical Response

<u>Boby Lessard^{1,2}</u>, Alexandra Bourgouin³, Luc Beaulieu^{1,2}, Andreas Schüller³ et Louis Archambault^{1,2}

1 Département de physique, génie physique et optique, et Centre de recherche sur le cancer, Université Laval

2 CHU de Québec – Université Laval et CRCHU de Québec, Québec, Canada

3 Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Lower Saxony, DE

Nothing to disclose

Context: Scintillation Dosimetry

- > What is a scintillation detector?
- Advantages of scintillation detectors:
 - ✓ Water-equivalent
 - ✓ Real-time measurements
 - ✓ Excellent spatial (mm) and temporal (ns) resolution

Context: Scintillation Dosimetry

- > What is a scintillation detector?
- Advantages of scintillation detectors:
 - ✓ Water-equivalent
 - ✓ Real-time measurements
 - ✓ Excellent spatial (mm) and temporal (ns) resolution

... but, are their properties altered by radiation damages?

Goal of the Project

- What are the long term effects of ultra-high dose rate (UHDR) electron radiation on scintillation dosimeters?
 - Effects on light transmission efficiency?
 - Effects on scintillation efficiency?

Irradiated Samples

Small samples of clear and scintillating fibers irradiated under UHDR electron beam

- > Three similar trials performed for each irradiation dose
- ➢ BCF-12 → Polystyrene core; ESKA Premier → PMMA core

Irradiation Conditions

> Metrological Electron Accelerator Facility (MELAF) at PTB, Germany

- Irradiation doses: 0 kGy, 20 kGy, 50 kGy, 100 kGy
- Tests carried out at 20 MeV, 5 Hz
 PRF, pulse width of 2.5 μs
- Dose around 6 Gy per pulse

Experimental Measurements

Scintillation and light transmission measurements were performed <u>before</u> and <u>after</u> the UHDR irradiation.

Measurements done using the Hyperscint RP200 platform (Medscint inc., Canada), 17 days and 28 days after the irradiation

Experimental Setup

- 2-channel measurements
 - ✤ Reference channel
 - Measurement channel, with the sample of interest
- Samples always placed in jackets with the same orientation
- Each measurement repeated 5 times
- ➤ 4 doses, 3 trials, 3
 different samples → 36
 samples

Results: Scintillation (BCF-12)

- > At 100 kGy: Decrease of (39 ± 8) % at day 17
 - > Decrease of (37 ± 12) % at day 28 \rightarrow no increase/decrease with time
- Decrease more important around 425 nm

Results: Transmission (BCF-12)

- > At 100 kGy: Decrease of (10 ± 4) % at day 17
 - > Decrease of (14 ± 8) % at day 28 \rightarrow no increase/decrease with time
- Decrease more important around 420 nm

Results: Transmission (ESKA 1 mm)

- At 100 kGy: Decrease of (12 ± 5) % at day 17
 - > Increase of (2 ± 4) % at day 28 \rightarrow Increase in efficiency with time! (Influence of oxygen?)
- Decrease more important around 425 nm
 - Around 425 nm: increase by ~20% for 100 kGy within 9 days!

Results: Transmission (ESKA 0.5 mm)

- At 100 kGy: Decrease of (12 ± 30) % at day 17 (same mean value as ESKA 1 mm, but large uncertainties)
- No apparent decrease as a function of the wavelength...

Conclusion

- Efficiency decrease always around 420-425 nm (blue region)
- Damages more important for scintillation
- Non-linear decrease with dose
- Important drop in scintillation efficiency at high dose
 - > No recovery in time (scintillation)
 - Must be accounted for when manufacturing/using scintillation detectors

Efficiency Decrease at Change over 9 days Sample 100 kGy [%] BCF-12 (Scint.*) Nothing 39 ± 8 BCF-12 (Trans.) Nothing 10 ± 4 Potential full recovery ESKA 1 mm 12 ± 5 Unknown ESKA 0.5 mm 12 ± 30

Summary of the behavior at 100 kGy

* Scintillation and transmission

Acknowledgements

Research group at Université Laval

Medscint Team

This project 18HLT04 UHDpulse has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Alexandra Bourgouin (PTB)

THANK YOU FOR LISTENING!

