

IRRADIATION OF LUMINESCENCE DOSIMETERS IN STRAY RADIATION FIELD IN LASER-DRIVEN ACCELERATORS

<u>A. Cimmino¹</u>, I. Ambrožová², R. Versaci¹, V. Olšovcová¹, V. Stránský¹, R. Truneček¹

1) ELI Beamlines, Institute of Physics, Academy of Sciences of the Czech Republic, Czech Republic

2) Dep. of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, Czech Republic

Faculty Disclosure

Х	No, nothing to disclose
	Yes, please specify:

• UHDpulse project:

- Work Package 4 Activity 4.2.1: *Testing of luminescence dosimeters in stray radiation fields*.
- Stray radiation fields:
 - Are inevitably associated with all therapeutic beams
 - May cause damage to healthy tissue and organs outside the targeted area → <u>need to</u> <u>characterized and understood</u>
 - Have the same pulsed time structure of the primary beams → <u>same metrological</u> <u>issues as primary field</u>
 - Are mixed fields, i.e. composed of different types of particles with different energies
 → <u>The various field components need to be identified.</u>
- Solid state dosimeters are being investigated, in this context, by ELI Beamlines (<u>https://www.eli-beams.eu/</u>) and UJF CAS (<u>http://www.ujf.cas.cz/en/</u>)

Optically Stimulated Luminescence Detectors (OSLD)

- Optically Stimulated Luminescence:
 - is the emission of light from a previously irradiated material when stimulated with photons of a specific energy.

https://commons.wikimedia.org/wiki/File:Optically_Stim ulated_Luminescence_Dosimeter_Energy_Diagram.svg

- <u>The intensity of the emitted light is proportional</u> to the absorbed energy
- BeO OSLDs have good dosimetric properties:
 - High sensitivity to ionizing radiation
 - Wide linear response (~1µGy few Gy)
 - Tissue equivalent (Z_{eff} = 7.2)
 - Sensitive to artificial and natural light

ELI Beamlines – International

ELI (Extreme Light Infrastructure) Beamlines

Laser	Energy [J]	Power [TW]	Rate [Hz]
L1 (ALLEGRA) (present) (target)	0.03 0.1	1.5 5	10 ³ 10 ³
L2 (AMOS)	2	10 ³	50
L3 (HAPLS) (present) (target)	30 30	333 10 ³	3.3 10
L4 (ATON)	2·10 ³	104	0.1

- The ALLEGRA laser (design performance)
 - Developed in house by the ELI Beamlines laser team.
 - The laser system is designed to generate <20 fs pulses with
 - energy exceeding 100 mJ per pulse
 - high repetition rate (1 kHz).

ALFA Experiment - 2020

Electron L1 Laser

Courtesy of Dr. G.M Grittani & the ALFA Team

ALFA (Allegra Laser For Acceleration)

 Electron beam of energy up to 50 MeV with nominal laser parameters

ALFA commissioning in Feb. 2021

- Laser is working at 1 kHz, but pulses were done by operating a mechanical shutter (minimum 2 sec)
- Plasma generation and acceleration was triggered at 1Hz
- Pulse burst were in : single, 20 msec and 100 msec mode
- ~ 8000 pulses at low energy (6 mJ) with very weak signal
- ~500 pulses at high energy (22 mJ)
- 2 minutes of continues operation
- Beam characteristics:
 - Few pulses >5-10 MeV
 - Energy > 0.5 MeV beam
 - Ang Distr. 90 mrad,
 - Charge 1 pC/pulse

PARTICLE TYPE

No of primaries/charge: Source size: Angular distribution: Energy spectrum:

1 pC / shot electrons pointlike 250 mrad divergence, gaussian angular distribution Maxwellian distribution with 300 keV temperature

Courtesy of D. Horvath (ELI Beamlines RP Group)

H*(10) at contact with experimental chamber only [mSv per pulse].

"UNPUBLISHED DATA – DO NOT COPY OR DISTRIBUTE"

A. Cimmino --- FRPT 2021

The Czech Academy

BeO- OSLDs: Results

"UNPUBLISHED DATA – DO NOT COPY OR DISTRIBUTE"

A. Cimmino --- FRPT 2021

The Czech Academy of Sciences

BeO- OSLDs: Results

"UNPUBLISHED DATA – DO NOT COPY OR DISTRIBUTE"

A. Cimmino --- FRPT 2021

The Czech Academy of Sciences

- UHDPulse Work Package 4 Activity 4.2.1: *Testing of luminescence dosimeters in stray radiation fields*:
 - BeO OSLDs were irradiated in a stray radiation field, using a laser-driven electron beam @ ELI Beamlines.
 - Preliminary results were presented.
 - Laser-driven radiation fields are complex and not well characterized as those produced in conventional accelerators.
 - The discrepancy data/Monte Carlo can be attributed to unknown geometrical features of the beam and uncertainties of the source term.
- Future plans :
 - Repeat measurements using laser driven proton beams
 - Add different detector technologies with different sensitivities to different particles
 - Thermoluminescence dosimeters:
 - Electron and proton laser-driven beams

Acknowledgements: This project 18HLT04 UHDpulse has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

