

### SILICON CARBIDE DIODES FOR ULTRA-HIGH DOSE RATE DOSIMETRY

### <u>Celeste Fleta</u><sup>1</sup>, Giulio Pellegrini<sup>1</sup>, Philippe Godignon<sup>1</sup>, Faustino Gomez<sup>2,3</sup>, José Paz-Martín<sup>2</sup>, Rafael Kranzer<sup>4,5</sup>, Andreas Schüller<sup>6</sup>

<sup>1</sup> Instituto de Microelectronica de Barcelona, IMB-CNM-CSIC, Barcelona, Spain

- <sup>2</sup> Department of Particle Physics, University of Santiago, Spain
- <sup>3</sup> Radiation Physics Laboratory, RIAIDT, University of Santiago, Spain
- <sup>4</sup> PTW, Freiburg, Germany
- <sup>5</sup> University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, Germany
- <sup>6</sup> Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany











#### C. Fleta | Silicon carbide diodes for ultra-high dose rate dosimetry | 2

## Disclosure

- Rafael Kranzer is a PTW employee.
- This work has received funding from:
  - Grant RTC-2017-6369-3 (GRACE) by MCIN/AEI/10.13039/501100011033 and ERDF "A way of making Europe".
  - The EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation program under project 18HLT04-UHDpulse.





The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States





# Silicon carbide diodes as real-time radiation dosimeters

Why SiC? Wide bandgap semiconductors (SiC and diamond), compared to silicon, have:

- Lower dark current
- Higher radiation hardness
- Tolerance to visible light and temperature variations

In addition, SiC compared to diamond has:

- More mature technology allowing to produce complex structures
- High quality substrate material available up to 200 mm wafers at a reasonable cost: good price-performance ratio





J. M. Rafí et al. JINST 13 C01045 (2018); IEEE Trans.Nucl.Sci. 67 (2020)



### Devices

- Circular 1 mm diameter PiN diodes on 3µm epitaxial 4H-SiC
- Designed and fabricated by • IMB-CNM-CSIC (EU Patent pending)
- Encapsulated by PTW with their • microSilicon housing for electrical connectivity

SiC diode schematic cross section

SiC Active

SiC support

4" SiC wafer







### Tests with electron beams at PTB



- Measurements at PTB UHDPP electron beam
- Electron energy 20 MeV
- Repetition rate 5 Hz, pulse duration 0.6, 1.6 and 2.9 μs
- Measurements in PMMA water tank with a motorized positioning system
- Reference dosimetry provided by Alanine and prototype flashDiamond\*
- SiC diode operated without external bias

(\*) M. Marinelli et al. "Design, realization and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry" Med Phys. 2022;49:1902–1910



SiC diode in water phantom at PTB



#### Intermediate DPP range: 0.2 - 0.42 Gy

- Response independent both of DPP and of instantaneous dose rate
- Linearity deviation < 1 % \*</li>
- SiC diode sensitivity ~1 nC/Gy

(\*) includes uncertainty of reference detector





#### Ultra-high DPP range: 1 - 11 Gy

 Signal linearity up to at least 11 Gy/pulse (3.8 MGy/s) with a relative deviation of < 3 %</li>



www.FRPT-Conference.org | #FRPT2022



### Effect of accumulated dose

- Two runs, around ~16 kGy accumulated dose between them
- Response linearity not affected
- Sensitivity variation with dose
  < 1%/kGy \*</li>

ightarrow Not as radiation hard as diamond, better than silicon

\* Worst case (under analysis)





#### PDD measurement

- Several runs of PDD curves obtained with the SiC diode:
  - Max. dose per pulse: 1.1 to 11.6 Gy
  - Pulse duration: 0.5 and 2.9 μs
- Performance comparable to reference flashDiamond





### **Conclusions and outlook**



- First SiC diodes produced and validated for relative dosimetry in UHDR pulsed electron beams.
  - Operation without external bias
  - Response independent both of DPP and of instantaneous dose rate in the investigated range: up to 11 Gy/pulse, 3.8 MGy/s
  - Radiation robust: < 1%/kGy sensitivity variation with dose</li>
  - ✓ Performance comparable to flashDiamond in PDD measurement under UHDPP conditions
- Future work:
  - Systematic characterization in a wide range of beam configurations
  - Test other detector structures already fabricated: diodes with sidewalls removed for increased spatial and dose resolution, pixel and strip configurations for 2D dose maps







## Thank you!





**EURAME1** 











The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

www.FRPT-Conference.org | #FRPT2022