# Development of innovative silicon carbide detectors for radiation detection and dosimetry

Celeste Fleta Instituto de Microelectrónica de Barcelona, IMB-CNM-CSIC





www.imb-cnm.csic.es





#### **Material properties**

|                                    | Silicon  | 4H-SiC    | CVD diamond  |
|------------------------------------|----------|-----------|--------------|
| Band gap [eV]                      | 1.12     | 3.23      | 5.5          |
| Ionization energy [eV/e-h]         | 3.6      | 7.6 - 8.4 | 13.6         |
| Atomic displacement threshold [eV] | 13-15    | 30 - 40   | 43           |
| Density [g/cm3]                    | 2.33     | 3.22      | 3.52         |
| Electron mobility [cm2/Vs]         | 1450     | 800 - 900 | 1700         |
| Hole mobility [cm2/Vs]             | 450      | 115       | 2100         |
| Electr. sat. velocity [1E7 cm/s]   | 1        | 2.2       | 2.7          |
| Breakdown field [MV/cm]            | 0.3      | 3 – 4     | 10           |
| Thermal conductivity [W/cmK]       | 1.5      | 5         | 20           |
| Yield [fC/MeV]                     | 44.4     | 21.0      | 11.8         |
| Sensitivity [pC/mGy/mm3]           | 644      | 425       | 259          |
| Wafer cost                         | O(<100€) | O(1,000€) | O(100,000€)* |

- Wide bandgap energy
  - Not affected by T variations
  - Low leakage current
  - Transparent to visible light
- High atomic displacement threshold energy
  - Radiation hardness
- High saturation velocity
  - Timing applications
- High breakdown voltage and high thermal conductivity
  - Power devices
- Good price/performance ratio





#### Many potential applications in sensors

#### **Nuclear fusion reactors**

-Plasma diagnostics

#### Aerospace

-Sensors and electronics

#### Medical

-Dosimetry and microdosimetry











- SiC based PiN junction diodes fabricated on 4H-SiC on a high resistivity n-type doped epilayer, 100 or 150mm wafers
- > Technology based on our SiC rectifiers for space (ESA Bepi-Colombo & Solar Orbiter missions)
- Adapted for radiation detection with high temperature processes and optimized metal contacts









## SiC diodes for UHDR dosimetry

UHDpulse

# In the framework of UHDPulse WP3

- CNM-CSIC has designed and fabricated a set of SiC diodes for dosimetry
- EU Patent pending
- Devices tested: circular 1 mm diameter PiN diodes on 3 µm epitaxial 4H-SiC
- Encapsulated by PTW with their microSilicon housing for electrical connectivity

SiC diode schematic cross section









#### **Tests with electron beams at PTB**

UHDpulse \





- Measurements at PTB UHDPP electron beam
- Electron energy 20 MeV
- Repetition rate 5 Hz, pulse duration 0.6, 1.6 and 2.9 µs
- Measurements in PMMA water tank with a motorized positioning system
- SSDs 90 and 70 cm
- Reference dosimetry provided by Alanine and prototype flashDiamond\*
- SiC diode operated without external bias

(\*) M. Marinelli et al. "Design, realization and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry" Med Phys. 2022;49:1902–1910



SiC diode in water phantom at PTB





UHDpulse

## Intermediate DPP range: 0.2 - 0.42 Gy

- Response independent both of DPP and of instantaneous dose rate
- Linearity deviation < 1 % \*</li>
- SiC diode sensitivity ~1 nC/Gy

(\*) includes uncertainty of reference detector







UHDpulse

# Ultra-high DPP range: 1 - 11 Gy

 Signal linearity up to at least 11 Gy/pulse (3.8 MGy/s) with a relative deviation of < 3 %</li>







#### Effect of accumulated dose

UHDpulse \

- Two runs, around ~16 kGy accumulated dose between them
- Response linearity not affected
- Sensitivity variation with dose < 1%/kGy \*</li>
  - $\rightarrow$  Not as radiation hard as diamond, better than silicon

\* Worst case estimation (under analysis)







UHDpulse

#### PDD measurement

- 5 consecutive runs of PDD curves obtained with the SiC diode:
  - Max. dose per pulse: 1.1 to 11.6 Gy
  - Pulse duration: 0.5 and 2.9  $\mu s$
- Performance comparable to reference flashDiamond





- Silicon carbide is an attractive material for radiation sensors
  - Mature technology, wafer-level production, large geometries
  - Many applications where silicon is not suitable (radiation damage, T sensitivity, ...)
- Open topic
  - Radiation hardness
- In the framework of UHDPulse we have fabricated and validated the first SiC diodes for relative dosimetry in UHDR pulsed electron beams.
  - Operation without external bias
  - Response independent both of DPP and of instantaneous dose rate in the investigated range: up to 11 Gy/pulse, 3.8 MGy/s
  - ✓ More radiation robust than silicon
  - Performance comparable to flashDiamond in PDD measurement under UHDPP conditions



# Acknowledgement

#### **Collaborators:**

- Giulio Pellegrini, Philippe Godignon (Instituto de Microelectrónica de Barcelona, IMB-CNM-CSIC, Spain)
- Faustino Gomez, José Paz-Martín (Department of Particle Physics, University of Santiago, Spain)
- Rafael Kranzer (PTW Freiburg and University Clinic for Medical Radiation Physics, Carl von Ossietzky University Oldenburg, Germany)
- Andreas Schüller (Physikalisch-Technische Bundesanstalt (PTB), Germany)



#### This work has received funding from:

- Grant RTC-2017-6369-3 (GRACE) by MCIN/AEI/10.13039/501100011033 and ERDF "A way of making Europe".
- The EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation program under project 18HLT04-UHDpulse.





# Thanks for your attention

C/ del Til·lers s/n Campus de la Universitat Autònoma de Barcelona (UAB) 08193 Cerdanyola del Vallès (Bellaterra) Barcelona · Spain



#### www.imb-cnm.csic.es

