### Dose, Flux and LET Measurements of Scattered Radiation in **Proton Therapy Using Timepix3 Detectors**

#### Cristina Oancea<sup>1</sup>, Lukas Marek<sup>1,5</sup>, Jiri Pivec<sup>1</sup>, Carlos Granja<sup>1</sup>, Jan Jakubek<sup>1</sup>, Elisabeth Bodenstein<sup>2</sup>, Jörg Pawelke<sup>2,3</sup> Jaroslav Solc<sup>4</sup>, Zdenek Vykydal<sup>4</sup>

<sup>1</sup> ADVACAM, U Pergamenky 12, 170 00 Prague 7, Czech Republic

<sup>2</sup> Oncoray - National Center For Radiation Research In Oncology, Faculty Of Medicine And University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany <sup>3</sup> Helmholtz-zentrum Dresden-Rossendorf, Institute Of Radiooncology - Oncoray, Dresden, Germany

<sup>4</sup> Czech Metrology Institute (CMI), Okruzi 31, Brno, Czech Republic

<sup>5</sup> Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University, Czech Republic





www.advacam.com Imaging the Unseen

PTCOG60, Miami, USA June, 2022

cristina.oancea@advacam.com

#### Disclosure

## Cristina Oancea, Lukas Marek, Jiri Pivec, Carlos Granja, Jan Jakubek are employed by



www.advacam.com



#### **Motivation**

- Aim: Spectral and component characterization of secondary particles produced in proton beams using a pixel detector
- Spectral tracking and LET measurements of light and heavy charged particles in a water-phantom
- Flux and dose rate of the scattered radiation (protons, electrons, X rays, gamma, neutrons)

## Experimental setup

#### **Experimental setup**



University Proton Therapy Dresden, horizontal research beamline (IBA cyclotron)

- Stationary 220 MeV proton pencil beams
- Pulsed beam structure with specified dose rates from 0.01 to 360 Gy/s
- Timepix3 placed laterally (24 positions) perpendicular to the beam direction
- Multiple depth measurements ranging from the entry region to distal of the Bragg peak (BP).



### **Experiment Setup: MiniPIX Timepix3-Flex pixel detector**

Timepix3 Si 500 µm



- Customized waterproof miniaturized radiation detector
- ASIC chip with Si sensor in **low-Z** chipboard and **support**
- Sensor area: 14 mm × 14 mm = 65 k pixels (55 μm x 55 μm)
- Simultaneous measurement of deposited energy and time
- 100% detection efficiency for charged particles, wide FoV
- **Thermal neutrons** detected with <sup>6</sup>LiF converter

### Spectral tracking and imaging of single particles

Precise measurement of position, deposited energy, time, direction



Different particles make characteristic tracks

C. Granja, C. Oancea et al. NIM-A 988 (2021) 164901

#### LET, flux and dose rate measurements



C. Granja, C. Oancea et al. NIMA 988 (2021) 164901

#### □ LET in silicon

Wide range (0.1 to >100 keV/µm)

$$LET = \frac{E}{x}$$
, **E** = cluster energy,  
**x** = 3D length

#### □ Particle flux and DR

- Per-pixel deposited energy
- Time of arrival of each particle

#### Calibration of Timepix3 detector for thermal neutrons



## Results

#### **Results: Deposited energy of scattered radiation**



#### Measured deposited energy by Timepix3 detector

12/07/2022

### **Results: Flux & DR of scattered particles**



#### **Results: LET histograms of stray radiation**



## Linear deposited energy response for wide range of dose rates (DR)

from conventional to FLASH-like proton beams



- Linear response of deposited energy
- Conversion from deposited energy to dose in Si and dose in water

Oancea et al submitted to Physica Medica, 2022

# Preliminary results: thermal neutron flux in proton beams

### MC simulation of spatial distribution of thermal neutron fluence\*

Measured thermal neutron flux for a DR at the reference point of 0.27 Gy/s





Thermal neutron flux in a water phantom should be an unneglected component



#### Summary

- The newly developed MiniPIX TimePIX3-Flex was used to characterize the stray radiation fields of conventional and UHDR proton beams produced in a water phantom
- A methodology for the characterization of secondary radiation produced in proton beams (composition, flux, deposited energy and dose rate) in water was developed
- Linear response of deposited energy in silicon over a wide range of DR (from 0.14 Gy/s to 270 Gy/s)
- A new method for measuring the thermal neutron flux in proton beams was established.

#### **Acknowledgments**

The project 18HLT04 UHDpulse received funding from the EMPIR programme

http://uhdpulse-empir.eu/

 This project has received funding from the European Union's H2020 Research and Innovation Programme, under Grant Agreement No: 730983



<u>A</u> D V A C A M

Imaging the Unseen



Jiri Pivec Carlos Granja Lukas Marek Jan Jakubek

∧ D V A C A M Imaging the Unseen Jörg Pawelke Elisabeth Bodenstein Sebastian Gantz

Jaroslav Solc Zdenek Vykydal







Contact at cristina.oancea@advacam.com