Clinical translation of FLASH radiation therapy: What has been done and the challenges still ahead.
Outline

1. Veterinary experience

2. Ongoing / Upcoming clinical trials

3. Some remaining challenges for clinical use of FLASH (VHEE) therapy
1. Veterinary experience: Cats & Dogs – Electrons

- Experimental / Modified medical LINAC, Electron 4.5 - 6, 10 MeV
- Single-fraction
- Single-beam
- A few pulses (µs, > 1 Gy) per fraction
- Dose rate : 130 – 500 Gy/s

<table>
<thead>
<tr>
<th>Dose escalation</th>
<th>Treatment time (ms)</th>
<th>Field size (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cats 25 – 41 Gy</td>
<td>80 - 300</td>
<td>20 x 30</td>
</tr>
<tr>
<td>Dogs 15 – 35 Gy</td>
<td>30 - 75</td>
<td>80 x 40</td>
</tr>
</tbody>
</table>

Feasibility / Safety studies, Dose-escalation Superficial tumors:
- Feline Nasal Planum Squamous Cell Carcinoma
- Canine Sarcoma, Mastocytoma, Plasmacytoma, Melanoma, Squamous Carcinoma

Konradsson et al. Front Oncol 2021
1. Veterinary experience: Cats & Dogs – Electrons

Feasibility / Safety studies, Dose-escalation Superficial tumors:
- Feline Nasal Planum Squamous Cell Carcinoma
- Canine Sarcoma, Mastocytoma, Plasmacytoma, Melanoma, Squamous Carcinoma

Complete response: 5/6 cats, 5/10 dogs
Partial response / Stable disease: 3/10 dogs
Recurrence / Progressive disease: 1/10 cats, 2/10 dogs
Side effects: mild (depilation, grade 1), except 1 dog (35 Gy), medium (moist desquamation, grade 3); no severe early or late reactions.

Side effects: mild (depilation, grade 1), except 1 dog (35 Gy), medium (moist desquamation, grade 3); no severe early or late reactions.

Konradsson et al. Front Oncol 2021
Fidel et al. Vet Radiol Ultrasound, 2001
1. Veterinary experience: Dogs – Protons

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Breed</th>
<th>Age (years)</th>
<th>Sex</th>
<th>Weight (kg)</th>
<th>Dose rate (Gy/s)</th>
<th>Dose (Gy)</th>
<th>FLASH or standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Black Lab</td>
<td>11.0</td>
<td>F</td>
<td>33.1</td>
<td>76.2</td>
<td>8.1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>St Bernard</td>
<td>4.5</td>
<td>M</td>
<td>61.4</td>
<td>61.0</td>
<td>4.0</td>
<td>F</td>
</tr>
<tr>
<td>3</td>
<td>Mastiff</td>
<td>6.0</td>
<td>M</td>
<td>57.0</td>
<td>10.0</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>4</td>
<td>Mastiff</td>
<td>6.5</td>
<td>M</td>
<td>59.6</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>5</td>
<td>Rottweiler</td>
<td>8.0</td>
<td>M</td>
<td>55.2</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>6</td>
<td>Mixed Breed</td>
<td>8.0</td>
<td>M</td>
<td>25.2</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>7</td>
<td>Doberman/Great Dane Mix</td>
<td>5.5</td>
<td>F</td>
<td>45.9</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>8</td>
<td>Mixed Breed</td>
<td>7.0</td>
<td>F</td>
<td>29.8</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>9</td>
<td>Golden Retriever</td>
<td>9.0</td>
<td>M</td>
<td>35.7</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>10</td>
<td>Shepherd Mix</td>
<td>9.0</td>
<td>M</td>
<td>42.9</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>11</td>
<td>Great Pyrenees</td>
<td>9.0</td>
<td>M</td>
<td>29.8</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>12</td>
<td>American Bulldog</td>
<td>10.0</td>
<td>M</td>
<td>45.4</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>13a</td>
<td>Mixed Breed</td>
<td>8.0</td>
<td>M</td>
<td>36.0</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>14a</td>
<td>Doberman</td>
<td>8.0</td>
<td>M</td>
<td>36.5</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>15</td>
<td>Labrador Mix</td>
<td>10.0</td>
<td>M</td>
<td>42.5</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>16</td>
<td>Great Dane</td>
<td>5.0</td>
<td>M</td>
<td>71.0</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>17</td>
<td>Rottweiler</td>
<td>6.0</td>
<td>M</td>
<td>34.4</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>18</td>
<td>Rottweiler/Husky</td>
<td>10.0</td>
<td>M</td>
<td>46.3</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
<tr>
<td>19</td>
<td>Greyhound</td>
<td>1.5</td>
<td>M</td>
<td>28.0</td>
<td>0.5</td>
<td>8.0</td>
<td>F</td>
</tr>
</tbody>
</table>

- Medical Cyclotron, Proton 230 MeV
- Single-fraction
- Single beam (Double scattering), before BP
- Quasi-continuous beam
- Dose rate: 60 – 130 Gy/s (FLASH) + 0.5 Gy/s (CONV)

- Side effects, within 5 days (preoperatively): 1 tumor lysis.
- Absence of increase of inflammation marker (TGF-β1), comparable with preclinical mouse models.

Canine Osteosarcoma

Velalopoulou et al. Cancer Res 2021

Keith Cengel, ESTRO 2021

Dose	Treatment time (ms)	Field size
Dogs | 8 – 12 Gy | ~ 100 | ~ cm²
1. Veterinary experience

2. Ongoing / Upcoming clinical trials

3. Some remaining challenges for clinical use of FLASH (VHEE) therapy
2. Ongoing / Upcoming clinical trials: Cutaneous Lymphoma

- Experimental LINAC, Electron 6 MeV
- Single-fraction
- Dose: 15 Gy
- Single beam
- 10 pulses (1µs) per fraction
- Field size: 3.5-cm diameter
- Treatment time: 0.09s
- Dose rate: 167 Gy/s

- Complete response
- Side effects: redness, oedema, no severe early or late reactions.

First human patient treated with FLASH RT
Bourhis et al. Radiother&Oncol 2019

Ongoing:
- Dose escalation trial (skin melanoma metastasis) 22 – 34 Gy
- Randomized trial FLASH vs CONV

Jean Bourhis, ESTRO 2021
2. Ongoing / Upcoming clinical trials: Bone metastasis - Protons

FAST-01 (FeAsibility Study of FLASH Radiotherapy for the Treatment of Symptomatic Bone Metastases)
Cincinnati Children’s/UCHealth Proton Therapy Center, 2020
PI: John Breneman, MD

Palliative treatment of Bone metastasis

- Medical Cyclotron, Proton
- **Single-fraction**
- Dose: 8 Gy
- **Single beam, before BP**
- Quasi-continuous beam
- treatment field sizes: 7.5 cm x 7.5 cm; 7.5 cm x 10 cm; 7.5 cm x 12 cm; 7.5 cm x 14 cm; 7.5 cm x 16 cm; 7.5 cm x 18 cm; 7.5 cm x 20 cm

Endpoints:
- Equivalent Pain response
- Any possible adverse side effects
- Workflow feasibility
2. Ongoing / Upcoming clinical trials: Intraoperative electron RT

- **Mobetron – IntraOp**
- **FLASH LIAC – SIT**
- **FlashKnife – PMB**

- Electron 6 – 10 – 12 MeV
- Single-fraction
- Dose: 10 – 35 Gy
- Single beam
- A few pulses per fraction
- Field size: 3 – 12 cm diameter
- Dose rate: Hundreds of Gy/s
2. Ongoing / Upcoming clinical trials: Intraoperative electron RT

<table>
<thead>
<tr>
<th>eIORT Indication</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial breast irradiation</td>
<td>Volume/Dose increase</td>
</tr>
<tr>
<td>Breast Boost</td>
<td>Lowered Side effects</td>
</tr>
<tr>
<td>Extremities Soft Tissue Sarcoma</td>
<td>Lowered Side effects</td>
</tr>
<tr>
<td>Skin cancer - Non-melanoma</td>
<td>Lowered Side effects, Hypofractionation</td>
</tr>
<tr>
<td>Recurrent Rectal Cancer</td>
<td>Both</td>
</tr>
<tr>
<td>Unresected pancreatic Cancer</td>
<td>Both</td>
</tr>
<tr>
<td>Retroperitoneal Soft Tissue Sarcoma</td>
<td>Both</td>
</tr>
<tr>
<td>High-grade Brain Tumor</td>
<td>Both</td>
</tr>
<tr>
<td>Skin cancer - Melanoma</td>
<td>Both (EBRT)</td>
</tr>
</tbody>
</table>

Philip Poortmans, ESTRO 2021
1. Veterinary experience

2. Ongoing / Upcoming clinical trials

3. Some remaining challenges for clinical use of FLASH (VHEE) therapy
3. Some remaining challenges for clinical use of FLASH (VHEE) therapy

FEASIBILITY

1. Large volumes
2. Higher fluence (particle/cm²)
3. Scanning technique
4. Re-irradiation of parts of the volume
5. Within < ~ 300 ms
6.
7.
3. Some remaining challenges for clinical use of FLASH (VHEE) therapy

FEASIBILITY

1. Large volumes
2. Reference dose
3. Direct reading
4. Accuracy / spatial resolution
5. Traceability
6. VHEE?

Task Group No. 359 – Chair Dimitris Mihailidis
FLASH (ultra-high dose rate) radiation dosimetry
3. Some remaining challenges for clinical use of FLASH (VHEE) therapy

FEASIBILITY

1. Large volumes
2. Reference dose
3. Beam monitoring
4.
5.
6.
7.

![Graph showing dose per pulse and total IR duration](image)

- **Dose-per-pulse < Total dose / 5**
- Total IR duration
- Amplitude
- Time (µs)

Time (µs)

1

10^4

//

Gy
3. Some remaining challenges for clinical use of FLASH (VHEE) therapy

EFFICACY
FLASH have to compete with modern RT techniques

1. Large volumes
2. Reference dose
3. Beam monitoring
4. Multiple beams to achieve conformational dose distribution
5. Re-irradiation of parts of the volume
6. Within < ~ 300 ms ???
7. 2 crossing beams

3 intensity-modulated beams

Volumetric Arc-therapy
3. Some remaining challenges for clinical use of FLASH (VHEE) therapy

EFFICACY

FLASH have to compete with modern RT techniques

1. Large volumes
2. Reference dose
3. Beam monitoring
4. Multiple beams to achieve conformational dose distribution
5. Daily fractionation
6. Patient/Tumor positioning
7. In-vivo dosimetry

Where D is the total dose
d is the fractional dose
T is the overall time of the treatment
- α/β ratio of 10 is typically used for tumors.
- α/β ratio of 3 is typically used for normal tissues.

$$BED = D \left[1 + \frac{d}{\alpha/\beta} \right] - K (T - T_K)$$
3. Some remaining challenges for clinical use of FLASH (VHEE) therapy

ACCURACY

FLASH have to compete with modern RT techniques

1. Large volumes
2. Reference dose
3. Beam monitoring
4. Multiple beams to achieve conformal dose distribution
5. Daily fractionation
6. Patient / Tumor positioning
7.

3. Some remaining challenges for clinical use of FLASH (VHEE) therapy

ACCURACY

FLASH have to compete with modern RT techniques

1. Large volumes
2. Reference dose
3. Beam monitoring
4. Multiple beams to achieve conformational dose distribution
5. Daily fractionation
6. Patient / Tumor positioning
7. In-vivo dosimetry
8. ...

Sophie Heinrich | Strathclyde Virtual Workshop: Ultra-high Dose Rate RT | 20 September 2021
CONCLUSION

GREAT HOPES...
BUT A LOT TO THINK ABOUT!

Thank you for your attention

This project (18HLT04) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.