

METROLOGY FOR ADVANCED RADIOTHERAPY USING PARTICLE BEAMS WITH ULTRA-HIGH PULSE DOSE: TEST IN FLASH-LIKE ELECTRON BEAM AT MICROTRON MT 25

<u>Ambrožová I.¹</u>, Chvátil D.², Cimmino A.³, Motta S.³, Oancea C.⁴, Olšanský V.², Olšovcová V.³, Pivec J.⁴, Šolc J.⁵, Versaci R.³

¹ Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic

² Department of Accelerators, Nuclear Physics Institute of the Czech Academy of Sciences, Řež, Czech Republic

³ ELI Beamlines Centre, Institute of Physics of the Czech Academy of Sciences, Dolní Břežany, Czech Republic

⁴ ADVACAM s.r.o., Prague, Czech Republic

⁵ Czech Metrology Institute, Prague, Czech Republic

FLASH therapy

- therapeutic resistance to radiation -> innovative radiotherapy strategies
- ultra-high pulse dose-rates (UHPDR) may dramatically reduce adverse side effects, while preserving the required tumour control

UHPDR beams

- new generation of proton accelerators, development of alternative irradiation modalities (e.g. VHEE), novel pulsed sources (laser-driven electron or proton beams)
- metrological challenges -> new dosimetry tools and methods needed

	FLASH	conventional
dose per pulse	1 – 10 Gy	0.3 mGy
pulse width	1 -2 us	3 us
dose rate during pulse	10^6 Gy/s	10^2 Gy/s
pulse repetition frequency	10 – 100 Hz	200 Hz
mean dose rate	40 – 1000 Gy/s	0.05 Gy/s
time for dose delivery	100 ms	4 min

UHDpulse project

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

- joint research project within EMPIR (European Metrology Programme for Innovation and Research), coordinated by the National Metrology Institute of Germany, PTB
- <u>http://uhdpulse-empir.eu/</u>
- Sep 2019 Feb 2023
- to provide the metrological tools needed to establish traceability in absorbed dose measurements of particle beams with ultra-high pulse dose rates (UHPDR), i.e. with ultra-high dose per pulse or with ultrashort pulse duration.

UHDpulse project

- Specific objectives
 - To develop a metrological framework, including SI-traceable primary and secondary reference standards and validated reference methods for dosimetry measurements for particle beams with ultra-high pulse dose rates
 - To characterise the response of available detector systems in particle beams with ultra-high dose per pulse or with ultrashort pulse duration
 - To develop traceable and validated methods for relative dosimetry and for the characterisation of stray radiation outside the primary pulsed particle beams
 - To provide the input data for Codes of Practice for absolute dose measurements in particle beams with ultra-high pulse dose rates
 - To facilitate the uptake of the project's achievements by the measurement supply chain, standards developing organisations and end users
- 4 technical work packages (WP)
 - WP1: SI-traceable primary standards for absorbed dose measurements towards the development of primary standard
 - WP2: Secondary standards and reference methods for reference and relative dosimetry
 - WP3: Detector systems for measurements in the primary beam
 - WP4: Detector systems and methods for dosimetry outside primary beam stray radiation

Microtron MT25

- behavior of the detectors in a conventional radiation field -> characterization in pulsed mixed radiation fields
- several irradiation campaigns
- circular electron accelerator
- monoenergetic electrons (6–24 MeV)
- pulse length 3.5 μs , repetition rate 423 Hz
- mean current 0.5–20 μ A

Detectors

- ionization chamber to monitor the beam
- luminescent detectors
 - thermoluminescent detectors (CaSO₄:Dy, LiF)
 - optically stimulated luminescent detectors
- plastic nuclear track detectors (PNTD)
- GAFchromic films
- pixel semiconductor detector Timepix3
 - Silicon sensor, thickness 500 μm
 - 256 x 256 pixels (1px = 55 μm)
 - visualization of individual charged particle tracks -> possibility to distinguish and characterize radiation components of mixed time-dependent stray radiation fields

MiniPIX TimePIX3

Optimized UHDPulse detector FLEX Mini*PIX* Time*PIX3*

Experimental set-up

- electron beam 23 MeV
- lead bunker to shield background radiation
- dose rate 2–44 Gy/s
- PE moderator (8 cm thick)

Experimental set-up

• PMMA plate with passive detectors (25 x 25 x 1.3 cm)

• shifter stage with Timepix 3

• measurements supported by Monte Carlo simulations of particle energy spectra, fluence and dose distributions inside the bunker, and ionization chamber response

• simulated dose profile and fluence spectra of electrons and photons

Fluence spectra of electrons and photons **2 cm off** the 25 MeV electron beam axis, behind 8 cm thick PE and without PE

- absorbed dose as a function of distance from the beam axis measured with different types of TLD and simulated with MCNP
- total air kerma at the beam axis 31 Gy (standard uncertainty estimated to 20%)

Applied Nuclear Physics Conference, Prague, Czech Republic, September 14, 2021

 absorbed dose in water/air kerma as a function of distance from the beam axis measured with different types of TLD and OSLD

Applied Nuclear Physics Conference, Prague, Czech Republic, September 14, 2021

- dose rate (DR) measurements using Minipix Timepix3
- Bias 120 V, acquisition time ≤ 1ms
- 100 mm distance from the primary beam, behind 1 cm PMMA phantom
- beam intensity ~100-1000nA

• flux of particles and dose rate measurements using Minipix Timepix3 detector behind 8 cm PE

• characterization of stray radiation behind 8 cm PMMA phantom using Minipix Timepix3

Distance	Flux	DR
mm	particles/cm2/s	Gy/s
160	3.73E+04	7.11E-06
140	5.54E+04	9.08E-06
110	8.00E+04	2.30E-05
80	1.32E+05	5.07E-05
70	3.64E+05	1.39E-04
60	3.48E+05	1.56E-04

C. Oancea et al submitted to JINST, 2021

Conclusions

- preliminary data from test at electron beam at microtron MT 25 were presented
- various types of TLD with different sensitivity to thermal neutrons
- the active hybrid semiconductor pixel detectors Timepix3 made out of Si sensors are suitable for measuring the stray radiation in electron beams
- within the UHDpulse project a customized waterproof detector for FLASH radiotherapy was developed (all the electronics placed at a distance from the sensor on a flexible cable and no metallic parts close to the sensor)
- the particle flux and dose rate could be measured in data-driven mode up to 50 mm distance from the beam core

Acknowledgement

The project 18HLT04 UHDpulse has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States