

Towards primary and secondary standards for dosimetry in Flash radiotherapy

Alexandra Bourgouin¹, Andreas Schüller¹, Ralf-Peter Kapsch¹

¹ Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany

- The total prescribed radiation dose is delivered with ultra-high dose rate (UHDR) in less than a second
- Studies support the hypothesis that this significantly reduces the adverse side effects on the healthy tissue for equal dose delivery
- > The ultra-high dose rate is challenging, both for delivery and dosimetry

The UHDpulse project aim to develop reliable dosimetry methods for Flash modality and guidance for CoPs.

Metrological Electron Accelerator Facility (MELAF) at PTB, Germany

- Tests carried out at 20 MeV,
 5 Hz PRF, pulse width of 2.5 µs
- Dose varied between 0.5 Gy and 2.0 Gy per pulse
- Detector response compared to beam current monitor

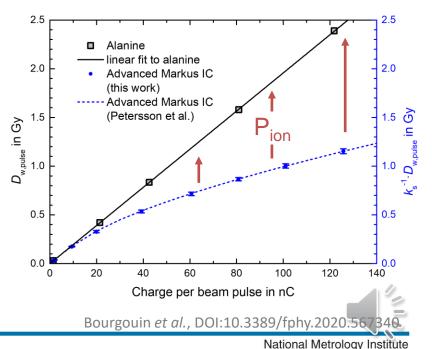
Developed at McGill University

4

Provided by SunNuclear

Quasi-adiabatic mode

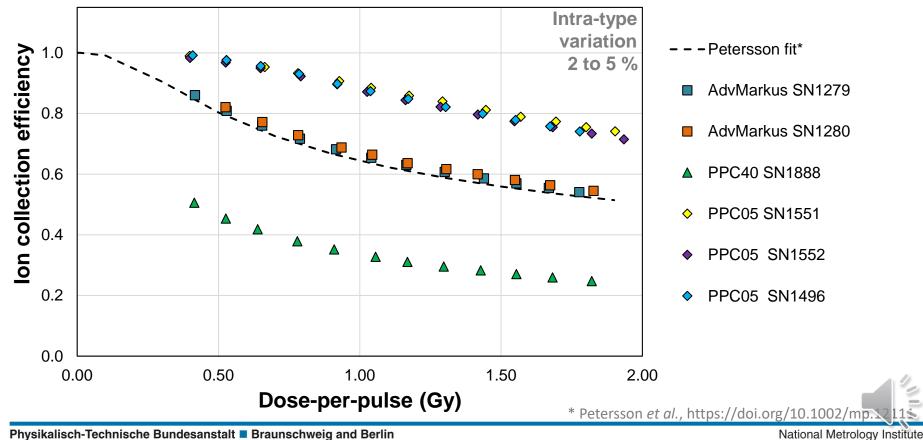
- Alanine is considered to be the reference
- 3 parallel plate ionization chamber model
 - PPC05 (sensitive volume depth of 0.6 mm)
 - Advanced Markus (sensitive volume depth of 1mm)
 - PPC40 (sensitive volume depth of 2.0 mm)


5

Standard dosimeter for external beam reference dosimetry is the ionization chamber

The ultra-high dose rate means that ion recombination is very large > 50% !

Ionometry of Flash beams


- Do not follow currant model (Boag)
- Integrating dosimeters such as alanine can be use to measure the ion recombination

Calorimetry of Flash beams

Gives absorbed dose directly from a measure of the radiation-induced UHD per pulse temperature rise 1.2 1.0 $P = c \cdot \Delta T \cdot k_{nc}$ Vormalized signa 0.8 0.6 ΔΤ Time constant 0.4 should be unaffected by dose-rate 0.2 Measurement 0.0 —Ideal Simpler compared to -0.2 conventional dose rate 20 40 60 80 100 120 0 Time (sec.)

- Calorimetry is showing promising results for NMI and clinical use
 - Gets simpler at Flash
 - Advanced insulation is not required, nor the use of a heat lost correction factor
- > Ionometry
 - Intra-type variations in the 2-5% range
 - Development on theory/model to explained the observed ion recombination

For relative measurement

Plastic scintillators, diodes, or diamond detectors are under investigation

http://uhdpulse-empir.eu/

Merci Thank you Dankeschön

This project 18HLT04 UHDpulse has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Physikalisch-Technische Bundesanstalt Braunschweig Bundesallee 100 38116 Braunschweig Alexandra Bourgouin Telefon: +49 531 592-6439 E-Mail: alexandra.bourgouin@ptb.de www.ptb.de

