

Dosimetry of electron beams –

challenges and possible solutions for VHEE and FLASH

Andreas Schüller

Department 6.2 "Dosimetry for Radiation Therapy and Diagnostic Radiology"

VHEE'2020 Workshop 5.-7.October 2020, CERN (virtual)

Dosimetry of electron beams –

challenges and possible solutions for VHEE and FLASH

Contents

- Dosimetry for conventional clinical electron beams
- Dosimetric challenges at FLASH and VHEE
- The UHDpulse project
- Possible solutions for VHEE and FLASH dosimetry

Primary standard of the unit Gy for absorbed dose to water

$$D_{\rm w} = {\rm d}\varepsilon/{\rm d}m$$

1 Gy = 1 J/Kg

ε: energy deposit in medium, m: mass of medium (water)

 $D_{\rm w} = c_{\rm p} \cdot \Delta T \cdot \Pi k_{\rm i}$

 $\Delta T = 0.24 \text{ mK/Gy}$

 c_p : Heat capacity of water, ΔT : Radiation-induced temperature rise Πk_i : corrections for perturbations (heat transport, etc.)

Clinical beams: 4 – 22 MeV, 100 – 400 Hz, 1 - 4 μs macropulse, mean dose rate < 5 Gy/min

PTB water calorimeter at a medical LINAC

Ionization chambers: the standard for reference dosimetry in conventional radiotherapy

ionizing radiation creates ion pairs

high voltage

Codes of Practice: Formalism for clinical reference dosimetry of high-energy electron beams (3 – 50 MeV) → IAEA's TRS 398, AAPM's TG-51, DIN 6800-2

Plane-parallel ionization chamber in a water phantom (recommended for electron beams)

current

Formalism for electrons up to 50 MeV

<i>D</i> =	$(M-M_0) N k_{\rm p} k_{\rm h} k_{\rm s} k_{\rm p} k_{\rm E}$	
D	absorbed dose (at z_{ref})	
Μ	reading	
M_0	zero reading	
N	calibration coefficient (Co-60)	
	<u>correction due to</u>	
k_{ρ}	air density	
$\vec{k_{\rm h}}$	humidity	
k s	ion recombination	
$k_{\rm p}$	polarity	
κ _E	radiation quality (electrons)	

⁶⁰Co Source of PTB's calibration service (dose rate determined by means of water calorimeter)

Formalism for electrons up to 50 MeV

Reference depth: $z_{ref} = 0.6 R_{50} - 0.1$ (in cm)

 $R_{50} = 1.059 \ R_{50, ion} - 0.37 \ \text{cm} \ (R_{50}, ion > 10 \ \text{cm})$

Formalism for electrons up to 50 MeV

D =	$(M-M_0) N K_{\rm p} K_{\rm h} K_{\rm s} K_{\rm p} K_{\rm E}$		-	TRS 398	_• _ /
D	absorbed dose (at z_{ref})	0.95			
Μ	reading		A.C.		
M_0	zero reading	a	Port and		-•-
Ν	calibration factor (Co-60)	* 0.90	and an inde	8-8-	
	correction due to	0.50		2. 2.	*
<i>k</i> _o	air density		n -		
<i>k</i> _h	humidity	0.85	-		
k s	ion recombination				
<i>k</i> _n	polarity	0	0 5	10	15
k _F	radiation quality (electrons)		Bear	n Quality Index /	R ₅₀ (g cm ⁻²

 $k_{\rm F} = k_{\rm O} = -0.1312 \ (R_{50})^{0.214} \ k_{\rm F}$ $k_{\rm F}$ "(Advanced Markus)=0.985 20

~50 MeV

Attix RMI 449 Capintec PS-033 Exradin P11 --↔- Holt (Memorial) NACP/Calcam

-o- Markus --- Roos

Formalism for electrons up to 50 MeV

 $D = (M - M_0) N k_{\rm p} k_{\rm h} k_{\rm s} k_{\rm p} k_{\rm E}$

- D absorbed dose (at \mathbf{z}_{ref})
- M reading

 $k_{
ho}$

 $k_{\rm h}$

ks

 $k_{\rm p}$

k_F

- M_0 zero reading
- N calibration factor (Co-60) correction due to
 - air density
 - humidity
 - ion recombination
 - polarity
 - radiation quality (electrons)

00

high dose per beam pulse

- ightarrow high density of ion pairs
- \rightarrow ion recombination
- ightarrow deviation from linear response

For conventional beams (< 0.3 mGy/pulse) **k**_s amounts to a few 0.1%

Example: FLASH irradiation of mice

http://dx.doi.org/10.1016/j.radonc.2017.05.003

Example: FLASH irradiation of pig skin

Centre hospitalier universitaire vaudois

Conventional and FLASH Irradiation (with same total dose)

Physikalisch-Technische Bundesanstalt ■ Braunschweig and Berlin 5.-7.10.2020

Conventional (5 Gy/min)

FLASH (300 Gy/s) 3 Gy/pulse

36 weeks post-RT

34 Gy 31 Gy 28 Gy

necrotic lesions

34 Gy 31 Gy 28 Gy

normal appearance of skin

Vozenin *et al.*, Clin Cancer Res 25 (2019) 35 http://dx.doi.org/10.1158/1078-0432.CCR-17-3375

Example: Treatment of the first human patient with FLASH-RT

Centre hospitalier universitaire vaudois

Disease:

lymphoma on skin

conventional RT:

20 Gy in 6 - 10 fractions high grade acute skin reactions takes >3 months to heal

FLASH-RT:

10 pulses (of 1 μs duration) in 90 ms with 1.5 Gy/pulse

Day 0

after 3 weeks (max. of skin reactions)

after 5 months

Bourhis et al., Radiother. Oncol. (2019) DOI: 10.1016/j.radonc.2019.06.019

Typical performance of an ionization chamber

5.-7.10.2020

12

Dosimetric challenges at FLASH and VHEE

Limit for ionization chambers

Dosimetric challenges at FLASH and VHEE

Crucial point dosimetry

If an error is made in dosimetry, the difference in tissue response between conventional irradiation and ultra-high dose rate irradiation at apparently the same total dose may be due to this error and not due to the FLASH effect.

Tools and methods established in dosimetry for conventional RT are not suitable for FLASH-RT or VHEE-RT

no active dosimeters for real time dosimetry

no formalism (Codes of Practice) for reference dosimetry

no corresponding primary standard

Dosimetric challenges at FLASH and VHEE

Ultra-high dose per pulse and energies which exceed the clinical range at PTB

PTB's Research electron accelerator

E = 0.5 – 50 MeV, up to 3 Gy/pulse (@ 0.7 m)

Beam line with water phantom

Verification of energy independence of passive dosimeters up to 50 MeV

exposure to 50 MeV electron beam

Depth in water in cm

Karolina Kokurewicz, A. Schüller *et al.,* Dosimetry for new radiation therapy approaches using high energy electron accelerators, Frontiers in Physics (2020, accepted) <u>https://doi.org/10.3389/fphy.2020.568302</u>

Verification of energy independence of passive dosimeters up to 50 MeV

Karolina Kokurewicz, A. Schüller *et al.,* Dosimetry for new radiation therapy approaches using high energy electron accelerators, Frontiers in Physics (2020, accepted) <u>https://doi.org/10.3389/fphy.2020.568302</u>

Verification of energy independence of passive dosimeters at VHEE

Alanine samples glued on EBT3 film in a water phantom

Setup at CLEAR facility

Karolina Kokurewicz, Investigation of focused Very High Energy Electrons (VHEEs) as a new radiotherapy method, PhD thesis (2020)

Verification of energy independence of passive dosimeters at VHEE

dose range limits

EBT3: < 40 Gy

PTB Alanine dosimetry system: < 25 Gy requested dose: 20 Gy 15 Gy 10 Gy 1 Gy 151 MeV

irradiated EBT3 film front side

4 stacks of 4 alanine pellets on the rear face of the EBT3 films

Verification of energy independence of passive dosimeters at VHEE

Verification of energy independence of passive dosimeters at VHEE

Karolina Kokurewicz, Investigation of focused Very High Energy Electrons (VHEEs) as a new radiotherapy method, PhD thesis (2020)

EMPIR project "UHDpulse"

Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates

Туре:	Joint Research Project					
Duration:	2019-2023					
Start:	1. Sept. 2019					
Funding:	2.1 M € UHDpulse					
Coordinator:	Andreas Schüller (PTB)					
Topic:	Tools for traceable dose					
	measurements for:					
FLASH radiotherapy						
· VIICE redictherense						

- VHEE radiotherapy
- Laser driven accelerators

http://uhdpulse-empir.eu/

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

The European Metrology Programme for Innovation and Research (EMPIR):

- metrology-focused programme of coordinated R&D
- enables European metrology institutes, industrial and medical organisations, and academia to collaborate

Metrology Institutes

Presented Euclideantal Presented Euclideantal Presented Euclideantal Image: Control of Measures Image: Control

- 6 Metrology institutes
- **3** Hospitals
- 5 Universities
- 5 Research institutes
- 6 Companies
- + Proton therapy network

QUEEN'S Centre hospitalier UNIVERSITY universitaire vaudois BELFAST institut**Curie** HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF **Inspire**Project beamlines Nuclear Physics Institute of the CAS MedAustron 🎴

Irradiation facility provider

Radiation detector developer

New designed ionization chamber with smaller gap

Simulated ion recombination correction factor for a plane parallel ionization chamber at 300 V for 5 Gy/pulse

A. Schüller, ..., Faustino Gomez *et al.*, The European Joint Research Project UHDpulse, Physica Medica (2020, accepted)

Al-calorimeter

A. Bourgouin, A. Schüller *et al.*, Calorimeter for real-time dosimetry of pulsed ultra-high dose rate electron beams, Frontiers in Physics (2020, accepted) <u>https://doi.org/10.3389/fphy.2020.567340</u>

Portable graphite calorimeter

A. Schüller, ..., Adrian Knyziak *et al.*, The European Joint Research Project UHDpulse, Physica Medica (2020, accepted)

Graphite probe calorimeter "Aerrow"

A prototype without its waterproof housing, next to a SNC 600c Farmer chamber

micro-CT scan of the prototype calorimeter

A. Schüller, ..., A. Schönfeld *et al.*, The European Joint Research Project UHDpulse, Physica Medica (2020, accepted) J. Renaud *et al.,* Med. Phys. 45 (2018) 414 https://doi.org/10.1002/mp.12669

Si-microdosimeter

SEM image of a section of the Si-microdosimeter.

A. Schüller, ..., Celeste Fleta et al., The European Joint Research Project UHDpulse, Physica Medica (2020, accepted)

J. Prieto-Pena *et al.,* Phys. Med. Biol. 65 (2020) 175004 <u>https://doi.org/10.1088/1361-6560/ab87fa</u>

Physikalisch-Technische Bundesanstalt ■ Braunschweig and Berlin 5.-7.10.2020

Utilization of Timepix3 detector

MiniPIX TPX3 Flex in a water phantom in an ultra-high dose rate proton beam

A. Schüller, ..., Jan Jakubek *et al.*, The European Joint Research Project UHDpulse, Physica Medica (2020, accepted)

Physikalisch-Technische Bundesanstalt ■ Braunschweig and Berlin 5.-7.10.2020

Multi-Leaf Faraday Cup for determination of energy + pulse charge

Physikalisch-Technische Bundesanstalt ■ Braunschweig and Berlin 5.-7.10.2020

http://uhdpulse-empir.eu/

Interested institutes that want to contribute to the goals of the project may join as collaborator.

contact: andreas.schueller@ptb.de

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.