The challenge of high dose rates for ionisation chambers

Dr. Daniela Poppinga

PTW - THE DOSIMETRY COMPANY

Motivation

Ionization chamber dosimetry at UHDR beams

- Ionization chamber dosimetry based on air-filled ionization chambers is the gold standard in clinical conditions in radiation therapy
- In this field the dosimetry with ionization chambers is very well understood and the ionization chambers are available worldwide and easy to use
- The FLASH effect has been discovered and it is now attractive to use VHEE with UHDR beams in clinical practice.
- Question for this talk: Can ionization chamber dosimetry also be used under VHEE conditions? Active monitoring of dosimetry would be essential for the clinical use of VHEE beams.
- Main problem: Recombination losses in ionization chambers at very high dose rates
 - Peterrson et al studied ion collection efficiency with simultaneous film and chamber measurements
 - Voltage dependent
 - Dose per pulse dependent

Petersson K, Jaccard M, Germond J-F, Buchillier T, Bochud F, Bourhis J, Vozenin M-C and Bailat C 2017 High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber Med. Phys. 44 1157–67

Probe holder

PTW - THE DOSIMETRY COMPANY

Setup Beam structures

Film calibration

- Film analysis: Epson 10000 XL scanner, 16 bit per color channel, no auto corrections, single channel analysis
- Film calibration with 21 MeV electron beam

Film measurement

> Dose value was determined by averaging according to chamber diameter

Film measurement

> Dose value was determined by averaging according to chamber diameter

PTW - THE DOSIMETRY COMPANY

#0 5

3.5 FWHM

7 FWHM

Chamber measurement

Dose measurement with ionization chamber according to international protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

Chamber measurement

Dose measurement with ionization chamber according to internazional protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

$$k_E = \frac{\left(s_{w,a}^{\Delta}\right)_{200 MeV, 7.2 cm} \cdot p_{200 MeV, 7.2 cm}}{\left(s_{w,a}^{\Delta}\right)_{Co60, 5 cm} \cdot p_{Co60, 5 cm}}$$

Monte Carlo simulation (University of Oldenburg)

Chamber measurement

Dose measurement with ionization chamber according to internazional protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

$$k_{E} = \frac{\left(s_{w,a}^{\Delta}\right)_{200 \ MeV, 7.2 \ cm} \cdot p_{200 \ MeV, 7.2 \ cm}}{\left(s_{w,a}^{\Delta}\right)_{Co60,5 \ cm} \cdot p_{Co60,5 \ cm}} \approx 0.79$$

Monte Carlo simulation (University of Oldenburg)

Chamber measurement

Dose measurement with ionization chamber according to internazional protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

Experimentally determined at different number of trains

Chamber measurement

Dose measurement with ionization chamber according to international protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

Results

	VERY HIGH	HIGH	MEDIUM	LOW
Number of trains	1	2	4	36 - 80
Time length of one train	66 ns	33 ns	16 ns	~ 1 fs
Time between two trains	1.2 s			
Number of bunches per train	100	50	25	1-2
Time between two bunches	666 ps (1.5 GHz)			

Chamber saturation at very high dose rates

Dose measurement with ionization chamber according to international protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

Results In summary

- Ion collection efficiency of an ionization chamber was determined by comparison to film measurement
- Ion collection efficiency was studied at CLEAR facility under different dose per train conditions and two beam sizes
- Results comparable to theoretical calculations and previous study by Petersson et al
- The work has shown that dosimetry via vented ionization chambers is possible at the CLEAR facility. This allows an active and directly read-out monitoring of the dosimetry during experiments.

Acknowledgement

Thank you

Rafael Kranzer

Roberto Corsini Wilfrid Farabolini Antonio Gilardi Vanessa Wyrwoll

Björn Poppe Hui Khee Looe Björn Delfs Lukas Garbisch

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

http://uhdpulse-empir.eu/

This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

