The challenge of high dose rates for ionisation chambers

Dr. Daniela Poppinga
Motivation
Ionization chamber dosimetry at UHDR beams

- Ionization chamber dosimetry based on air-filled ionization chambers is the gold standard in clinical conditions in radiation therapy
- In this field the dosimetry with ionization chambers is very well understood and the ionization chambers are available worldwide and easy to use
- The FLASH effect has been discovered and it is now attractive to use VHEE with UHDR beams in clinical practice.

Question for this talk: Can ionization chamber dosimetry also be used under VHEE conditions? Active monitoring of dosimetry would be essential for the clinical use of VHEE beams.

- Main problem: Recombination losses in ionization chambers at very high dose rates
 - *Peterson et al* studied ion collection efficiency with simultaneous film and chamber measurements
 - Voltage dependent
 - Dose per pulse dependent

Peterson K., Jaccard M., Germond J.F., Bucheler T., Bachud F., Buurlea J., Vozenin M.C. and Bailat C. 2017 High dose-per-pulse electron beam dosimetry - A model to correct for the ion recombination in the Advanced Markus ionization chamber Med. Phys. 44 1157–67
Setup
Phantom

200 MeV

ICT

Radiochromic films

YAG

Ionization chamber

Probe holder

Moveable water phantom

3.5 & 7 mm FWHM
Setup

Beam structures

<table>
<thead>
<tr>
<th></th>
<th>VERY HIGH</th>
<th>HIGH</th>
<th>MEDIUM</th>
<th>LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of trains</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>36-80</td>
</tr>
<tr>
<td>Time length of one train</td>
<td>66 ns</td>
<td>33 ns</td>
<td>16 ns</td>
<td>~ 1 fs</td>
</tr>
<tr>
<td>Time between two trains</td>
<td></td>
<td></td>
<td>1.2 s</td>
<td></td>
</tr>
<tr>
<td>Number of bunches per train</td>
<td>100</td>
<td>50</td>
<td>25</td>
<td>1-2</td>
</tr>
<tr>
<td>Time between two bunches</td>
<td></td>
<td></td>
<td>666 ps (1.5 GHz)</td>
<td></td>
</tr>
</tbody>
</table>
Measurement

Film calibration

- Film analysis: Epson 10000 XL scanner, 16 bit per color channel, no auto corrections, single channel analysis
- Film calibration with 21 MeV electron beam
Measurement

Film measurement

- Dose value was determined by averaging according to chamber diameter

3.5 FWHM

7 FWHM
Measurement

Film measurement

- Dose value was determined by averaging according to chamber diameter
Measurement
Chamber measurement

- Dose measurement with ionization chamber according to international protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

$$Dose\ to\ water = M \cdot N \cdot k_{TP} \cdot k_E \cdot k_P \cdot k_S$$

- Calibration factor for Co60 [Gy / C]
- Energy correction
- Recombination loss correction
- Temperature pressure correction
- Polarity correction
- Chamber signal [C]
Dose measurement with ionization chamber according to international protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

\[
Dose \text{ to water} = M \cdot N \cdot k_T \cdot k_E \cdot k_P \cdot k_S
\]

- **Chamber signal [C]**
- **Temperature pressure correction**
- **Recombination losses correction**
- **Energy correction**
- **Calibration factor for Co60 [Gy / C]**
- **Polarity correction**

\[
k_E = \frac{\left(s_{W,a}^\Delta \right)_{200 \text{ MeV}, 7.2 \text{ cm}} \cdot p_{200 \text{ MeV}, 7.2 \text{ cm}}}{{\left(s_{W,a}^\Delta \right)_{\text{Co60}, 5 \text{ cm}}} \cdot p_{\text{Co60}, 5 \text{ cm}}}
\]

Monte Carlo simulation (University of Oldenburg)
Dose measurement with ionization chamber according to international protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

\[Dose\ to\ water = M \cdot N \cdot k_{TP} \cdot k_E \cdot k_P \cdot k_S \]

\[k_E = \frac{(s_{w,a}^\Delta)_{200\ MeV,7.2\ cm} \cdot p_{200\ MeV,7.2\ cm}}{(s_{w,a}^\Delta)_{Co60,5\ cm} \cdot p_{Co60,5\ cm}} \approx 0.79 \]

Monte Carlo simulation (University of Oldenburg)
Measurement
Chamber measurement

- Dose measurement with ionization chamber according to international protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

\[
\text{Dose to water} = M \cdot N \cdot k_{TP} \cdot k_E \cdot k_P \cdot k_S
\]

- Calibration factor for Co60 [Gy / C]
- Recombination losses correction
- Energy correction
- Chamber signal [C]
- Temperature pressure correction
- Polarity correction

Experimentally determined at different number of trains
Measurement
Chamber measurement

- Dose measurement with ionization chamber according to international protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

\[\text{Dose to water} = M \cdot N \cdot k_{TP} \cdot k_E \cdot k_P \cdot k_S \]

Calibration factor for Co60 [Gy / C]
Chamber signal [C]
Temperature pressure correction
Energy correction
Polarity correction
Recombination losses correction

Comparison to film measurement
Results

Chamber saturation at very high dose rates

- Dose measurement with ionization chamber according to international protocols (AAPM TG 51 / TRS 398 / DIN 6800-2)

\[
Dose \text{ to water} = M \cdot N \cdot k_{TP} \cdot k_{E} \cdot k_{P} \cdot k_{S}
\]

Based on Gotz et al

Results
In summary

- Ion collection efficiency of an ionization chamber was determined by comparison to film measurement.

- Ion collection efficiency was studied at CLEAR facility under different dose per train conditions and two beam sizes.

- Results comparable to theoretical calculations and previous study by Petersson et al.

- The work has shown that dosimetry via vented ionization chambers is possible at the CLEAR facility. This allows an active and directly read-out monitoring of the dosimetry during experiments.
Acknowledgement
Thank you

Roberto Corsini
Wilfrid Farabolini
Antonio Gilardi
Vanessa Wyrwoll

Björn Poppe
Hui Khee Looe
Björn Delfs
Lukas Garbisch

This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

http://uhdpulse-empir.eu/