

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Dosimetry for advanced radiotherapy approaches using particle beams with ultra-high pulse dose rates (UHPDR) in the EMPIR UHDpulse project

<u>Anna Subiel</u>¹, Michael McManus¹, Francesco Romano^{1,2}, Nigel Lee¹, Hugo Palmans^{1,3}, Wilfrid Farabolini^{4,5}, Antonio Gilardi⁴, Andreas Schueller⁶

¹Medical Radiation Science, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
²Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Via S Sofia 64, I-95123 Catania, Italy
³MedAustron, Marie Curie-Strasse 5, 2700 Wiener Neustadt, Austria
⁴CERN, Geneva 1217, Switzerland
⁵CEA-IRFU, Gif-sur-Yvette, France
⁶Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

PTCOG 2020, 13-14 September 2020

Outline

- Interest in UHPDR RT
- Challenges of dosimetry of UHPDR beams
- The EMPIR UHDpulse project
- First results
 - ionization chamber dosimetry in UHPDR VHEE beams
- Conclusions

Why are we interested in UHPDR RT?

Review of FLASH studies (Wilson et al. Frontiers in Oncology 2020)

Summary of irradiation parameters and outcomes for in vivo studies investigating the FLASH effect

normal tissues

tumour tissues

In vivo studies				Irradiation delive	ery technique		In vivo studies			Irradiation delivery technique			
Model	Assay	FLASH dose modification factor (Bold if >1)	Total dose (Gy)	Dose rate (Gy/s)	Pulse rate (Hz)	Modality of radiation	Model	Assay	FLASH dose modification factor (Bold if > 1)	Total dose (Gy)	Dose rate (Gy/s)	Pulse rate (Hz)	Modality of radiation
Zebrafish embryo (16)	Fish length	1.2–1.5	10-12	10 ⁶ -10 ⁷	Single pulse	Electron	Thoracic irradiation of orthotopic	Tumor size and T-cell	>1	18	40	?	Proton
Zebrafish embryo (29)	Fish length, survival, and rate of oedema	1	0-43	100	0.106 × 10 ⁹	Proton	engrafted non-small cell lung cancer (Lewis lung carcinoma) in mice (36)	Infiltration	Differences in tumor size (significant) and T-cell				
Whole body irradiation of mice (34)	LD50	1.1	8-40	17-83	400	Electron			infiltration				
Thoracic irradiation of mice (10)	TGFβ signaling induction	1.8	17	40-60	100-150	Electron	Thoracic irradiation of orthotopic	Survival and tumor	1	15-28	60	100-150	Electron
Thoracic irradiation of mice (18)	Number of proliferating cells, DNA damage, expression of	>1 Significant Differences	17	40–60	100–150	Electron	engrafted mouse lung carcinoma TC-1 Luc+ in mice (10)	Growth Delay		10.10	010	108	
	inflammatory genes						Abdominal irradiation of mice (17)	Number of tumors, tumor weights	1	12-16	216	108	Electron
Abdominal irradiation of mice (33)	Survival	<1 Significant Difference	16	35	Likely 300	Electron	Whole brain irradiation of nude mice with orthotopic engrafted H454	Tumor Growth Delay	1	10–25	2.8-5.6-10 ⁶	Single pulse	Electron
Abdominal irradiation of mice (12)	LD50	1.2	22	70-210	100300	Electron	murine glioblastoma (8)						
Abdominal irradiation of mice (17)	Survival, stool formation, regeneration in crypts, apoptosis, and DNA damage in crypt cells	>1 Significant Differences	12–16	216	108	Electron	Local irradiation of subcutaneous engrafted Human breast cancer HBCx-12A and head and neck	Tumor Growth Delay	1	15-25	60	100–150	Electron
Whole brain irradiation of mice (25)		>1	30	200, 300	108, 180	Electron	carcinoma HEp-2 in nude mice (10)						
Whole brain irradiation of mice (13)	object location tests	Significant Differences	10	5.6-10 ⁶	Single pulse	Electron	Local irradiation of subcutaneous engrafted U87 human glioblastoma	Tumor Growth Delay	1	0–35	125-5.6.10 ⁶	100 or single pulse	Electron
whole brain inabiation of mide (15)	valiety of neurocognitive tests	Significant Differences	10	0.0.10	Oiligie puise	LIBORION	in nude mice (8)					pulou	
Whole brain irradiation of mice (14)	Novel object recognition test	>1 Significant Differences	10	30-5.6-10 ⁶	100 or single pulse	Electron	Local irradiation of subcutaneous engrafted U87 human glioblastoma	Tumor Growth Delay	1	1030	125-5.6·10 ⁶	100 or single pulse	Electron
Whole brain irradiation of mice (8)	Novel object recognition test	≥1.4	10	5.6-7.8-10 ⁶	single pulse	Electron	in nude mice (19)						
Whole brain irradiation of mice (24)	Novel object recognition test	>1 Significant Difference	10	37	1,300	X-ray	Local irradiation of subcutaneous engrafted Human hypopharyngeal	Tumor Growth Delay in irradiated Mice and RBE	1	20	0.008 mean, ≈10 ⁹ in pulse	<<1	Proton
Total body and partial body irradiation of mice (32)	TD50	1	3.6–28	37–41	1,388	X-ray	squamous cell carcinoma ATCC HTB-43 in nude mice (35)						
Thoracic irradiation of mice (11)	lung fibrosis, skin dermatitis, and survival	>1 Significant Difference	15, 17.5, 20	40	?	Proton	Treatment of locally advanced squamous cell carcinoma (SCC) in	Tumor response and survival	1 Similar response as in	25-41	130-390	100	Electron
Irradiation of mouse tail skin (49)	Necrosis ND50	1.4	30 and 50	17-170	50	Electron	cat patients (15)		published studies with				
Irradiation of mouse skin (27)	Early skin reaction score	1.1–1.6	50-75	2.5 mean, 3 × 10 ⁴ in the pulse	2380	Electron	Treatment of CD30+ T-cell	Tumor response	CONV-RT	15	167	100	Electron
Irradiation of rat skin (26)	Early skin reaction score	1.4-1.8	25-35	67	400	Electron	cutaneous lymphoma	and topolog	Similar response as previous				
Irradiation of mini-pig skin (15)	Skin toxicity	≥1.4	22-34	300	100	Electron	T3 N0 M0 B0 in human patient (9)		treatments with CONV-RT				

Challenges of dosimetry of UHPDR beams

Loss of collection efficiency in IC

CONV. FLASH

Mean dose rate \rightarrow 0.05 Gy/s vs 40-1000 Gy/s Dose per pulse \rightarrow 0.3 mGy vs 1-10 Gy Dose in a pulse \rightarrow 10² Gy/s vs 10⁶ Gy/s Delivery time \rightarrow few min vs <1s

NEW DOSIMETRY TOOLS & METHODS NEEDED

USE THE

RIGHT TOOL

FOR THE RIGHT JOB

EMPIR UHDpulse project National Physical Laboratory **EMPIR Call:** 2018 / Health (JRP) Topic: tools for traceable dose EMP EURAMET Coordinator: Andreas Schüller (PTB) measurements for: initiative is co-funded by the European Union's Horizon 2020 **FLASH** radiotherapy research and innovation programme and the EMPIR Participating States Duration: 2019-2022 **VHEE radiotherapy** 1. Sept. 2019 Start: UHDpulse: laser driven medical accelerators 2.1 M € Funding: Metrology for advanced 5 National Metrology Institutes NMI's Irradiation Radiation radiotherapy using leading in the field of dosimetry facility provider detector developer particle beams WP6 WP3 3 academic hospitals WP4 Centre hospitalier Г (coordin.) universitaire vaudois pioneers in FLASH-RT with ultra-high Imaging the Unseen WP1 3 universities pulse dose rates 0 NPLO experts in detector development institut**Curie** tional Physical Laborator pioneer in laser-driven beams WP2 USC METAS ei 3 national research institutes http://uhdpulse-empir.eu/ beamlines pioneer in detector development WP5 CZECH METROLOGY pioneer in laser-driven beams POLITECNICO (impact) **Nuclear Physics Institute of the CAS MILANO 1863** dosimetry expert 1 European research institute QUEEN'S UNIVERSITY Central Office of Measures CARL VON OSSIETZKY laser-driven beam research BELFAST UNIVERSITÄT OLDENBURG 5 companies HZDR varian expert in detector development corporation

Courtesy of A. Schueller

UHDpulse EMPIRE project: WPs

WP1:Primary standards

- Definition of reference conditions
- Reference radiation fields
- Adapting primary standards (water calorimeter, Fricke dosimeter)
- Prototype graphite calorimeters for laserdriven beams

WP2:Secondary standards, relative dosimetry

- Transfer from primary standards
- Characterizing established detector systems
- Formalism for reference dosimetry for future Code of Practice

WP4:Detectors and methods outside primary beam

- Active detection techniques for pulsed mixed radiation fields of stray radiation
- Methods with passive detectors

WP3:Detectors for primary beam

- Novel and custom-built active dosimetric systems
- Beam monitoring systems

First experimental results: UHPDR VHEEs

- BEAM PARAMETERS: 200 MeV, x and y σ of 5 mm, Δ E between 0.25 and 6.5%
- side-by-side measurements: PTW Roos chamber and NPL's graphite calorimeter
- quantification of the recombination factor k_{s,abs} for the Roos chamber for a range of collecting voltages: 75 V 600 V

The test-stand at the CLEAR facility, with the calorimeter, ion chamber and monitor chamber placed along the beam line with the beam travelling from right to left.

$$k_{s,abs} = \frac{D_{w,cal}}{Mk_{pol}k_{TP}k_{Q,Q_0}N_{D,w,Q_0}}$$

SCIENTIFIC REPORTS

natureresearch

OPEN The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams

> M. McManus^{1,2} ²⁵, F. Romano^{5,1}, N. D. Lee¹, W. Farabolini^{4,6}, A. Gilardi⁴, G. Royle², H. Palmans^{3,1} & A. Subiel¹ ²⁵

Results cont.

- $k_{\rm s}$ up to 10 (V = 200V) \rightarrow collection eff. 10%
- $k_{\rm s}$ up to 4 (V = 600V) \rightarrow collection eff. 25%
- *k_{s,abs}* compared with *k_{s,TVA}* (two-voltage method)
- Available recombination models include Boag's free-electron fraction models (Boag 1996)
- By optimising the free-electron fraction parameter in these equations, we were able to determine a best fit of our data.
- All analytical models of Boag and Di Martino show similar predictions of the recombination factor and estimations of the free electron fraction
- Analytical (Boag 1996, Di Martino 2005) and logistic (Petterson 2017) models tested
- The logistic model from Petersson shows the best fit to data over the whole dose-per-pulse range, however this model has no physical meaning and simply relies on two fitting constants α and β

- Tools and methods established for dosimetry of conventional RT sources are not suitable for UHPDR beams
- Challenges of dosimetry for ultra-high pulse dose rate to be addressed within EMPIR UHDpulse project
- Metrological and validated tools will be provided to support accurate preclinical studies and to enable future clinical applications for UHPDR beams

Thank you for your attention

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

This project has received funding from the EMPIR programme co-financed by the Participating States and from the EU Horizon 2020 research and innovation programme.