Dosimetry for advanced radiotherapy approaches using particle beams with ultra-high pulse dose rates (UHPDR) in the EMPIR UHDpulse project

Anna Subiel¹, Michael McManus¹, Francesco Romano¹,², Nigel Lee¹, Hugo Palmans¹,³, Wilfrid Farabolini⁴,⁵, Antonio Gilardi⁴, Andreas Schueller⁶

¹Medical Radiation Science, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
²Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Via S Sofia 64, I-95123 Catania, Italy
³MedAustron, Marie Curie-Strasse 5, 2700 Wiener Neustadt, Austria
⁴CERN, Geneva 1217, Switzerland
⁵CEA-IRFU, Gif-sur-Yvette, France
⁶Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

PTCOG 2020, 13-14 September 2020
Outline

- Interest in UHPDR RT
- Challenges of dosimetry of UHPDR beams
- The EMPIR UHDpulse project
- First results
 - ionization chamber dosimetry in UHPDR VHEE beams
- Conclusions
Why are we interested in UHPDR RT?

- subcutaneous lymphoma
- delivery: 10 pulses (1 us) in 90 ms with 1.5 Gy/pulse

FLASH effect!

![Graph showing TCP, NTCP, and FLASH NTCP curves](image)

Favaudon, et al. Sci Transl Med 2014; 6

Review of FLASH studies (Wilson et al. Frontiers in Oncology 2020)

Summary of irradiation parameters and outcomes for in vivo studies investigating the FLASH effect

Normal tissues

<table>
<thead>
<tr>
<th>Model</th>
<th>Assay</th>
<th>FLASH dose modification factor (Bold if > 1)</th>
<th>Total dose (Gy)</th>
<th>Irradiation delivery technique</th>
<th>Dose rate (Gy/s)</th>
<th>Pulse rate (Hz)</th>
<th>Modality of radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zebrafish embryo (1)</td>
<td>Fish length</td>
<td>1.3-1.5</td>
<td>10-12</td>
<td>Single pulse</td>
<td>Electron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zebrafish embryo (3)</td>
<td>Fish length, survival, and rate of ocularia</td>
<td>1</td>
<td>0-43</td>
<td>100</td>
<td>0.106 x 10^4</td>
<td>Proton</td>
<td></td>
</tr>
<tr>
<td>Whole body irradiation of mice (8)</td>
<td>LD50</td>
<td>1.1</td>
<td>8-40</td>
<td>17-43</td>
<td>400</td>
<td>Electron</td>
<td></td>
</tr>
<tr>
<td>Thoracic irradiation of mice (6)</td>
<td>TGFbeta signaling induction</td>
<td>1.8</td>
<td>17</td>
<td>40-60</td>
<td>100-150</td>
<td>Electron</td>
<td></td>
</tr>
<tr>
<td>Thoracic irradiation of mice (9)</td>
<td>Number of proliferating cells, DNA damage, expression of inflammatory genes</td>
<td>> 1</td>
<td>Significant Differences</td>
<td>40-60</td>
<td>100-150</td>
<td>Electron</td>
<td></td>
</tr>
</tbody>
</table>

Tumour tissues

<table>
<thead>
<tr>
<th>Model</th>
<th>Assay</th>
<th>FLASH dose modification factor (Bold if > 1)</th>
<th>Total dose (Gy)</th>
<th>Irradiation delivery technique</th>
<th>Dose rate (Gy/s)</th>
<th>Pulse rate (Hz)</th>
<th>Modality of radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thoric irradiation of orthotopic engrafted non-small cell lung cancer (Lewis lung carcinoma) in mice (10)</td>
<td>Tumor size and T-cell infiltration</td>
<td>18</td>
<td>40</td>
<td>?</td>
<td>Proton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thoric irradiation of orthotopic engrafted mouse lung carcinoma TC-1 Lue in mice (11)</td>
<td>Survival and tumor Growth Delay</td>
<td>15-28</td>
<td>60</td>
<td>100-150</td>
<td>Electron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal irradiation of mice (12)</td>
<td>Number of tumors, tumor weights</td>
<td>12-16</td>
<td>26</td>
<td>108</td>
<td>Electron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole brain irradiation of nude mice with orthotopic engrafted H445 murine glioblastoma (13)</td>
<td>Tumor Growth Delay</td>
<td>10-25</td>
<td>2.8-5.8 x 10^5</td>
<td>Single pulse</td>
<td>Electron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdominal irradiation of mice (16)</td>
<td>Local irradiation of subcutaneous engrafted Human breast cancer HEBV-1:2A, and head and neck carcinoma HEP-2 in nude mice (17)</td>
<td>15-25</td>
<td>60</td>
<td>100-150</td>
<td>Electron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole brain irradiation of nude mice with orthotopic engrafted U87 human glioblastoma in nude mice (18)</td>
<td>Local irradiation of subcutaneous engrafted U87 human glioblastoma in nude mice (19)</td>
<td>10-30</td>
<td>125-5.10^6</td>
<td>100 or single pulse</td>
<td>Electron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole brain irradiation of nude mice with orthotopic engrafted Human hypopharyngeal squamous cell carcinoma ATCC HT1080 in nude mice (20)</td>
<td>Local irradiation of subcutaneous engrafted human hypopharyngeal squamous cell carcinoma ATCC HT1080 in nude mice (21)</td>
<td>20</td>
<td>0.008 mean, 4 x 10^5 in pulse</td>
<td><1</td>
<td>Proton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of locally advanced squamous cell carcinoma (SOC) in cat patients (22)</td>
<td>Tumor response and survival</td>
<td>25-41</td>
<td>120-300</td>
<td>100</td>
<td>Electron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment of C3H/HeJ T-cell cutaneous lymphoma T3 N1 D0 ID in human patient (23)</td>
<td>Tumor response</td>
<td>15</td>
<td>167</td>
<td>100</td>
<td>Electron</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Challenges of dosimetry of UHPDPR beams

Loss of collection efficiency in IC

CONV. FLASH
Mean dose rate ➔ 0.05 Gy/s vs 40-1000 Gy/s
Dose per pulse ➔ 0.3 mGy vs 1-10 Gy
Dose in a pulse ➔ 10^2 Gy/s vs 10^6 Gy/s
Delivery time ➔ few min vs <1s

NEW DOSIMETRY TOOLS & METHODS NEEDED

USE THE RIGHT TOOL FOR THE RIGHT JOB

Petersson et al., Med Phys 44 (2017) 1157
EMPIR UHDpulse project

EMPIR Call: 2018 / Health (JRP)
Coordinator: Andreas Schüller (PTB)
Duration: 2019-2022
Start: 1. Sept. 2019
Funding: 2.1 M €

Topic: tools for traceable dose measurements for:
- FLASH radiotherapy
- VHEE radiotherapy
- laser driven medical accelerators

5 National Metrology Institutes
leading in the field of dosimetry
3 academic hospitals
pioneers in FLASH-RT
3 universities
experts in detector development
pioneer in laser-driven beams
3 national research institutes
pioneer in detector development
dosimetry expert
1 European research institute
laser-driven beam research
5 companies
expert in detector development

NMI’s
WP6 (coordin.)
WP1
WP2
WP5 (impact)

Irradiation facility provider

Radiation detector developer

WP3
WP4

5 companies
expert in detector development

http://uhdpulse-empir.eu/
Beams with ultra-high pulse dose rates

Courtesy of A. Schueller
WP1: Primary standards
- Definition of reference conditions
- Reference radiation fields
- Adapting primary standards (water calorimeter, Fricke dosimeter)
- Prototype graphite calorimeters for laser-driven beams

WP2: Secondary standards, relative dosimetry
- Transfer from primary standards
- Characterizing established detector systems
- Formalism for reference dosimetry for future Code of Practice

WP3: Detectors for primary beam
- Novel and custom-built active dosimetric systems
- Beam monitoring systems

WP4: Detectors and methods outside primary beam
- Active detection techniques for pulsed mixed radiation fields of stray radiation
- Methods with passive detectors
First experimental results: UHPDR VHEEs

OBJECTIVE: To study ion collection efficiency as a function of dose-per-pulse at instantaneous dose rates $5.0 \times 10^6 – 3.1 \times 10^8$ Gy/s for VHEE beams (energies suitable for deep-seated tumours)

- BEAM PARAMETERS: 200 MeV, x and y σ of 5 mm, ΔE between 0.25 and 6.5%
- side-by-side measurements: PTW Roos chamber and NPL’s graphite calorimeter
- quantification of the recombination factor $k_{s,abs}$ for the Roos chamber for a range of collecting voltages: 75 V – 600 V

![Test-stand at the CLEAR facility, with the calorimeter, ion chamber and monitor chamber placed along the beam line with the beam travelling from right to left.](image)

<table>
<thead>
<tr>
<th>Nominal Beam Charge (nC/pulse)</th>
<th>$D_{w,cal}$ (Gy/pulse)</th>
<th>$k_{s,abs}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75 V</td>
<td>200 V</td>
</tr>
<tr>
<td>0.05</td>
<td>1.3</td>
<td>0.98</td>
</tr>
<tr>
<td>0.2</td>
<td>3.41</td>
<td>1.87</td>
</tr>
<tr>
<td>0.25</td>
<td>2.46</td>
<td>1.33</td>
</tr>
<tr>
<td>1</td>
<td>6.00</td>
<td>3.07</td>
</tr>
<tr>
<td>2.2</td>
<td>8.80</td>
<td>4.12</td>
</tr>
<tr>
<td>3</td>
<td>11.96</td>
<td>5.67</td>
</tr>
<tr>
<td>4.5</td>
<td>14.99</td>
<td>6.87</td>
</tr>
<tr>
<td>6</td>
<td>18.94</td>
<td>8.54</td>
</tr>
<tr>
<td>7.5</td>
<td>19.54</td>
<td>8.77</td>
</tr>
<tr>
<td>9</td>
<td>21.38</td>
<td>9.30</td>
</tr>
<tr>
<td>10.5</td>
<td>22.99</td>
<td>9.95</td>
</tr>
</tbody>
</table>

$k_{s,abs} = \frac{D_{w,cal}}{M k_{pol} k_{TP} k_{Q_0} N_{D,w,Q_0} k_{abs}}$
Results cont.

- \(k_s \) up to 10 (V = 200V) \(\rightarrow \) collection eff. 10%
- \(k_s \) up to 4 (V = 600V) \(\rightarrow \) collection eff. 25%
- \(k_{s,abs} \) compared with \(k_{s,TVA} \) (two-voltage method)

- Available recombination models include Boag’s free-electron fraction models (Boag 1996)
- By optimising the free-electron fraction parameter in these equations, we were able to determine a best fit of our data.
- All analytical models of Boag and Di Martino show similar predictions of the recombination factor and estimations of the free electron fraction
- Analytical (Boag 1996, Di Martino 2005) and logistic (Petterson 2017) models tested
- The logistic model from Petersson shows the best fit to data over the whole dose-per-pulse range, however this model has no physical meaning and simply relies on two fitting constants \(\alpha \) and \(\beta \)
Conclusions

- Tools and methods established for dosimetry of conventional RT sources are not suitable for UHPDR beams
- Challenges of dosimetry for ultra-high pulse dose rate to be addressed within EMPIR UHDpulse project
- Metrological and validated tools will be provided to support accurate preclinical studies and to enable future clinical applications for UHPDR beams
Thank you for your attention

This project has received funding from the EMPIR programme co-financed by the Participating States and from the EU Horizon 2020 research and innovation programme.